- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Koomson, Valencia (3)
-
Kılıç, Alper (2)
-
Blaney, Giles (1)
-
Dungan, Joel (1)
-
Fantini, Sergio (1)
-
Frias, Jodee (1)
-
Levin, Michael (1)
-
Mathews, Juanita (1)
-
Miao, Yun (1)
-
Sassaroli, Angelo (1)
-
Tavakoli, Fatemeh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
Levitz, David (1)
-
Ozcan, Aydogan (1)
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kılıç, Alper; Miao, Yun; Koomson, Valencia (, Journal of Near Infrared Spectroscopy)Hemoglobin is one of the most important chromophores in the human body, since oxygen is carried to the tissue by binding with the hemoglobin. Therefore measuring the concentrations of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) is very important in both clinical settings and academic fields. Frequency domain near infrared spectroscopy (fdNIR spectroscopy) is a technique that can be used to measure the absolute concentrations of HbO and HbR non-invasively and locally. The fdNIR spectrometer utilizes the attenuation and the phase shift (with respect to the source) that an intensity modulated NIR light experiences in order to calculate the absorption (μa) and reduced scattering (μ′s) coefficient of the tissue. In this work, a miniaturized dual-wavelength fdNIR spectrometry instrument is presented with both tissue-like phantom and in vivo occlusion measurements. Systematic tests were performed on tissue phantoms to quantify the accuracy and stability of the instrument. The absolute errors for μaand μ′s were below 15% respectively. The amplitude and phase uncertainty were below 0.25% and 0.35°. In vivo measurements were also conducted to further validate the system.more » « less
-
Dungan, Joel; Mathews, Juanita; Levin, Michael; Koomson, Valencia (, 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS))null (Ed.)
An official website of the United States government
